LA-11769-MS

UC-905
Issued: February 1990

LA--11769-MS
DE90 006425

Performance Characterization of the
Convex C-240 Computer System

Rebecca |. Koskela
Margaret L. Simmons
Harvey |. Wasserman

=0

@

r .
L\ iSRRG Los Alamos National Laboratory MASTER
Au‘@u Lﬂj@t\‘y Los Alamos,New Mexico 87545 90

DISTRIBUTION OF THiS DOCUMENT IS IUNLIMITED

ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the
original report at a 300 dpi resolution. Original
color illustrations appear as black and white images.

For additional information or comments, contact:
Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

PERFORMANCE CHARACTERIZATION OF THE
CONVEX C-240 COMPUTER SYSTEM

by

REBECCA J. KOSKELA, MARGARET L. SIMMONS,
and HARVEY J. WASSERMAN

ABSTRACT

This paper considers the sequential, vector, and parallel processing
performance of the Convex C-240 computer system. A set of well-
characterized Fortran benchmarks that have been run on a wide variety of
computer systems was used for the siudy. The data from the C-240 are
compared with those obtained on a CRAY X-MP system as well as with
the Multiflow Trace-14/300 system The results suggest that the C-240
system is very nearly capable of providing throughput power equivalent to
that of the CRAY X-MP/14 we tested.

1. Introduction

We recently reported a comprehensive performance cvaluation of three computer systems that have come to be
known as minisupercomputers.! Among the machines tested was the Convex C-1/XP, a single-processor
inachine with a clock cycle of 100 nanoseconds (ns). In this paper we char.ucterize the performance of a four-
processor successor to the C-1/XP, the Convex C-240. The cvaluation considers the single-processor
performance in a dedicated environment as well as two aspects of the concurrent nature of the C-240. Of the
manufacturers mentioned in our original paper, Convex is the only to produce a sccond-gencratiot: machine.

Our interest in benchmarking computer systems extends back many years.2-7 The emphasis has largely been on
supercomputer architectures because of the challenge prescnted by the heterogencous nature of these machincs.
Supercomputers may be described as machines whose hardware consis:s of certain advanced architectural featurcs
implemented with state-of-thz-ant device technology.! The architectural feature that most distinguishes
supercomputers is parallelism, both in the CPU (examples are multiple CPUs; vector processors; chaining; and
multiple, independent, pipelined functional units) and in the memory (cxamples arc multiply banked main
memory, local memory, vector registers, and solid- state external storage devices). Supcrcomputer hardware tnust
also be accompaniced by software, particularly a compiler, that can extract parallclism from a program and make it
available to the hardware.

The Convex computers, and other machines like them, are also of interest to us because their architectures
contain many of the same features that contribute to supercomputer pecformance. Thus, we Jefine the term
minisupercomputer 10 mean machincs whose architectures featurc many, if not all, of the characteristics of
supercompeters, but whose device technology uses less expensive and more readily available components.! Note
that these definitions of supe-computer and minisupercomputer are indcpcndent of system price, observed
performance, and expected user class or "market niche.”

This bcnchmark of the Convex C-240 used the Los Alamos Benchmark sct that consists of thirteen Fortran codes
representative of the workload of the Laboratory. These codes have been described clsewhere.2 In addition, we

ran four codes that have been explicitly partitioned for parallel processing. A recent publication has appearcd
describing in detail the parallel performance of the C-240 on two of our codes.

2. C-240 Overview

A detailed description of the Convex C-240 architecture may be found elsewhere.? A C-240 consists of four
processors connected to a maximum of 1024 Mbytes of complementary metal oxide semiconductor (CMQOS)
memory. Our benchmark was of a machine with 512 Mbytes interleaved 32 ways. Memory is implemented on
120-ns dynamic RAM (DRAM) chips. The clock cycle of the machine is 40 ns. The vector functional units,
however, have a cycle time of 80 ns, but because there are two pipes, the effective time per result can be 40 ns.
There is a2 4-kbyte scalar data cache as well as an 8-kbyte instruction cache.

The software we used included the Convex UNIX OS (4.3BSD) Version 7.0, the Convex Fortran compiler, fc
5.0, and associated support libraries. The Convex Fortran compiler attempts to automatically paraliclize code at
the DO-loop level if there are no dependences between iterations of the loop in question. As with any vectorizing
compiler, the first attempt is to vectorize inner loops and then parallelize outer loops, interchanging lcops if
necessary for best performance. There are many command-line options to assist the compiler in its attempts to
both vectorize and parallelize code. In addition, there are inline directives to further assist optimization during
compilation.

3. Results

3.1 Single-Processor Tests

Table 1 shows the results of the single-processor tests. The C-240 times show considerable improvement over
the C-1/XP times of our last benchmark,! ranging from about twice as fast to almost six times as fast. The C-
1/XP had basically the same architecture as the C-240 with a slower clock period. Improvements in Convex
software probably account for most of the C-240's performance improvement above what the decrcased clock
cycle would provide.

Again, these are single-processor times for the Convex. When we used the compiler option that directs the
compiler to attempt parallelization, only WAVE showed any improvement in runtime. The four-processor time
for WAVE was 323.0 seconds. This speedup results from concurrent vector (CV) computation in which differcat
itcrations of vectorizable loops are computed on different CPUs in parallel.

There are two possible reasons why the other codes did not improve with the compiler option allowing CV
computation. One is that it is difficult for the compiler to discover the parallclism present because of the way
the codes are structured. Subroutine and function calls in the loops are often the culprits in this regard. Another
reason is that, for a given loop, CV computation reduces the vector length that the hardware executes, and the
rclatively short loop lengths in our codes mean inefficient use of the vector hardware. The C-240 has a
maximum vector register length of 128 elements. In WAVE, the predominant vector length is 256, whereas in
the other codes the vector length does not exceed 100. Both of these factors—the difficulty in extracting
oarallelism and the shorter hardware vector lengths resulting from CV computation—were also found in another
parallel minisupercomputer we benchmarked, the Alliant FX system.!

Table 1. Comparison of Single-Processor Benchmark Execution Times(3)

Convex Convex CRAY Ratio: Multiflow

C-1/1XP C-240 X-MP/14 C-240 1 Trace -14/300
Code Time Time Time X-MP Time
FFT 97.0 14.7 3.7 4.0 17.5
GAMTEB 61.0 10.7 5.6 1.9 12.1
SCALGAM 446.4 242.1 82.7 2.9 403.5
PHOTON - 338.2 120.3 2.8 553.5
LSS 65.0 23.5 6.3 3.7 20.7
MATRIX 529.0 140.0 349 38 259.0
INTMC 83.0 31.1 13.0 24 26.8
HYDRO 298.2 74.6 24,7 3.0 206.7
WAVE - 410.2 169.9 24 816.0
ESN - 419 17.2 24 56.7
'GAM () - 44 1.6 2.8 16.4
MCNP (©) - 2525.9 940.5 2.7 .

(@) Times arc in scconds.
(®) 40,000 source particles.

(c) 60,000 source garu'clcs.

For comparison, we have included in Table 1 benchmark times from a CRAY X-MP/14, which was the only
Cray Rescarch computer at the Laboratory running UNICOS at the time this study was carried out. (Thisis a
9.5-ns machine running CFT77 3.0.2.) A single processor of the C-240 provides between one-quarter and one-
half the performance of this single-processor X-MP on all of our benchmark codes. However, there arc three
codes in the benchmark suite that more closely resemble production codes at the Laboratory, and we tend to place
more cmphasis on their performance. They are HYDRO (ratio C-240/X-MP = 3.0), WAVE (2.4), and MCNP
2.7).

It is important to note the effect of the compilers on HYDRO. With CFT 1.16, the times for the X-MP/14 and
the (single-processor) C-240 are ncarly equal. This is because of scveral critical loops that do not vectorize with
CFT 1.16 but do vectorize using both CFT77 and the Convex C-240 compiler. Most of the loops arc rclatively
large (on the order of 50 staiements) and contain many conditionals.10

Note that the ratio of the clock cycle of the X-MP 1o that of the C-240 is about 4.2. On all of our benchmarks,
the performance of the C-240 relative to the X-MP is better than one would expect based on only the clock ratio.
Although not shown in Table 1, w2 have calculated the ratios of the single-processor C-240 times to the times
from a single processor of the CRAY Y-MP/864 (Serial Number 1010, running UNICOS and CFT77 3.0). Wc
computed these ratios to show the performance that a single C-240 processor provides relative to the full range of
Cray processors. The C-240-to-Y-MP ratios (again, both single-processor) are roughly in the range 3-7; here the
ratio of the CPU clocks is 6.7.

Table 1 also lists execution times for another minisupercomputer we benchmarked recently, the Multiflow Trace-
14/300.11 The Trace is a VLIW (very long instruction word) machine with a 130-ns cycle time. Comparing the
cxecution times for the Trace and the C-240, we sce that the Multiflow runs faster in two cases. One of these is
INTMC, a benchmark with integer computation only. We'll discuss the other of these, LSS, in a moment. We
also see that the performance of the two machines is closest on FFT, GAMTEB, SCALGAM/PHOTON, and
ESN. All these codes are scalar except for FFT, which involves short vector lengths (in the range 2-64). Vector
lengths in this range are especially short for the C-240. The ratios of execution times for these four codes on the

two minisupercomputers are in the range 1.1-1.7. On the vector codes in the benchmark suite, however, the
performance gap between the two machines widens further (ratios in parentheses): HYDRO (2.8), WAVE (2.5),
MATRIX (1.8), and VGAM (3.7). The only exception is LSS, the one code on which the Multiflow performs
better than the Convex. On LSS, the Multiflow inlines SAXPY and unrolls tr. SAXPY loop to a large dcpth.
We tried to inline SAXPY on the Cor.vex, but the compiler refused to do the inline because of the adjustable
arrays in SAXPY. Curiously, compiling LSS for vector concurrent mode on the C-240 failed to yield morc
encouraging results, possibly as a result of the short vector lengths that occur in SAXPY.

3.2 Basic Vector Operations

Rates, in millions of floating-point operations per second (MFLOPS), for simple vector opcrations on a singlc
processor of the C-240 are shown in Table 2. As is well known, these tests measure the time to do one million
vector operations. The one million operations are distributed in two loops: an inner loep that runs over the
vector length of interest and an outer loop that just repeats the inner loop enough times to get a measurable time.
Some compilers realize that there is redundant work involved in these two loops and optimize them in various
ways that defeat the purpose of the tests. The Convex compiler is a casc in point.

- ———— — — —————— — — — — —— I _— —— ——— —— —
Table 2. Convex C-240 (Single Processor) Rates (in MFLOPS) for

Selected Vector Operations as a_Function of Vector Length

Operation 10 50 100 200 1000
=V+S§ 4 9 1 1 12
V=V+S(i=1.n23) 2 9 1 1 11
V=V+S(i=1,n.8) 2 6 6 6 6
V=Vev 3 7 7 8. 8
V=V4§*V 6 13 15 15 15
V=V*V4Vev 6 13 14 14 14
VI@)=V*V 2 4 5 5 5

The rates that we first observed for these tests were roughly twice those shown in Table 2. However, somc
inconsistencics in the data prompted us to look at the code the compiler generated for a sample loop. In doing so
we found that the compiler had performed a "hoist and sink” qptimization in which it generated a load for one set
of vector operands, iterated on only the floatwig point instruction, and then did a single store. This particular
type of op-mization, which was al* seen in the Fujitsu VP-200 benchmark,!2 is more insidious than other
optimizations that subvert this benchmark. Other onMimizations, such as those performed by Cray CFT77,
simply remove all instructions from the loops. Thes is easy to spot even though the code doesn't check the
answers, because the observed rates are unreasonably large (~ gigaFLLOPS range). The observed rates for the C-
240, on the other hand, were reasonable. This demonstrates the increasing sophistication of optimizing
compilers and the ~eed to validate that the intent of certain benchmarks is being maintained.

The solution to the hoisting problem on the C-240 was 10 add a subroutine call using the vector operands as
arguments in the outer loop. The overhead for the subroutine call was then subtracted from the observed time for
each operation, 2ad the results are shown in Table 2.

The C-240, like its predecessor, has only a single port to memory. The effect of this can be seen in Table 2.
For example, the CRAY Y-MP, with two read ports and one write port, can fully support the bandwidth requircd
for the (one read, one write) operation V =V + S. As such, the Y-MP performs at about 90% of its peak rate on
this operation. The C-240, however, really has only one-half the bandwidth required for V = V + §, and wc
observe a rate (at vector length 1000) of about half the peak rate for this operation. Of course, the number of

ports to memory is only one of many featurcs that contribute to performance. For example, the CRAY-2 also
has one port. A single processor of the CRAY-2S achieves about 35% of its peak rate on this operation, because
the memory is relatively slow in comparison with the CPU spccd.13 The bandwidth per port on the C-240 is
about 200 Mbytes per sccond.

The observed decrease in rate between the operations V =V + Sand V = V * Vs also due to the single port.

The time data as a function of vector length for c.ch operation may be least-squares fit using a three parameter
model that gives the vecto: startup :'me, ihe time per result, and the "stripmine” time which is the time to
reload the vector registers after cach 128-element vector has been processed. A plot of time per element vs vector
length, showing both the experimental data (as Xs) and the least-squarcs fit for the cperation V.= V + S| is
shown in Figure 1. The fit yields a time per result of nearly 80 ns. In other words, on average, the C-240 can
return a result only every two clocks although it can overlap the vector load with the multiply, it must wait
until the load is finished before doing the store, because there is only one port.

We also measured the rates for simple vector operations as a function of vector length and vector stride for strides
2,4,8,23,and 49. At vector length 1000 only stride 8 (third entry in Table 2) shows an appreciable degradation
in rate (about 50% of the contiguous case). Because the memnory is interlcaved 32 ways, wilh stride 8 we access
only four unique banks. The other strides show small degradations at shorter vector lengths because of additional
startup time.

4.00e-5
1
= 3.00e-5-
O
[=4
[»2 L
o
©
L
=~ 2.00e-5
[
E ;
-
X
1.00e-5 -
0.006+0 -—
0 100 200 300 400 500

Vector Length

Figure 1. Least-squares fit of time data vs vector length for the operation V = V + S on the Convex C-
240. Experimental data are indicated by Xs. Parameters derived from the fit are startup time =
1922.0 ns, element time = 78.1 ns, and stripmine time = 841.4 ns.

4. Multiprocessirg

In a recent CRAY Y-MP benchmark!4 we considered multiprocessing performance in two different ways. The
first was to use several benchmark codes explicitly coded for multitasking and measure the decrease in tum-around
time for a single job. The second way was to measure the degradation in processing rate that occurred when a
code was timed while a specific "load” ran in the other processors. This second test is designed to estimate how
benchmarks will perform under more realistic user conditions as opposed to the dedicated runs described above.
Note, however, that these data are often indications of worst-case behavior.

We decided to carry out both of these types of tests on the Convex C-240. We discuss the multitasking results
first.

4.1 Muliitasking

Elapsed (wallclock) times for four parallel benchmarks are listed in Table 3. A plot of speedup for the codes is
shown in Figure 2. The spcedup, S, for n processors, is given by

S = T(serial) / T(n) ,

where T represents time. The parallel code HYDRO is not listed in the table because the Convex parallcl
processing system does not include event synchronization, which is currently heavily used by HYDRO.

e —— —
Table 3. Execution Times (seconds) Using Multiple Processors nn
the Convex C-240

Code Serial Time I Proc. 2 Proc. 3 Proc. 4 Proc.
ESN 42.0 45.6 24.8 18.2 14.1
GAMTEB 10.7 14.5 14.6 1.7 5.5
SCALGAM 242.1 377.3 187.7 126.1 96.0
MCNP 2393.6 25259 12129 813.1 660.8

560!0“) sourcwz

Parailel processing on the Convex C-240 is intended to be automatically handled by the compiler. However, the
four codes shown in Table 3 were explicitly partitioned to run in parallel. This approach, plus the use of some
dircctives, was necessary for the compiler to recognize the parallelism in the codes. This type of restructuring
has been necessary on all multiprocessors on which we have run.

The speedups on the four-processor C-240 range from 1.95 on GAMTEB to 3.6 on MCNP. The specdup on
MCNP comparcs favorably with the measured speedup of 3.65 on the CRAY X-MP/416.13

It 1s difficult to explain why speedups on the other codes are not as large as we might expect. We know that the
granularity of the tasks in GAMTEB and SCALGAM is smaller than that of MCNP, despite the overall
similarity in the algorithms (Monte Carlo particle transport). Notice that the overhead for multiprocessing,
which is estimated by taking the ratio of the one-processor time to the sequential time, is large on SCALGAM
and GAMTEB. For MCNP it is in linc with what it is on the CRAY-2 and CRAY X-MP/416. The small task
granularity in GAMTEB also accounts for the one-processor and two-processer times being the same. GAMTEB
contains a loop that spawns NPROC - 1 processes, where NPROC is the number of processors. The main code
then runs the multitasked routine as well. When NPROC is two, the main code processes all particles before the

child task even starts. It is not at all clear, however, why the overhead associated with SCALGAM is so large or

why the parallel efficiency of ESN, which involves no explicit synchronization, is only 75%. The parallel
benchmark codes are still in the deveiopment stage, however, and we plan to produce a more robust set soon.

4
3
—a— EN
29 —e— GAMTEB
) —&— SCALGAM
S —o— MNP
® 14
)
Q.
L2]
o T v Ly 1
0 1 2 3 4 5

processors

Figure 2. Multiprocessing speedup as a function of processing power on the Convex C-240.

4.2 Memory Contention Studies

We now consider the performance of some benchmarks under loaded conditions to test the cffect of memory
conflicts. Tables 4a—4e show the results of these tests. Each table lists data for a specific "probe” code, which is
what was timed. In Tables 4a-4d, the probes are simple vector operations, either V=V +SorV=V+S§*V
(SAXPY), for which we measured the rate in MFLOPS. The probes were measured at vector length 1000,

Table 4a. Performance of V = V + S in MFLOPS under Various Loads
Number of Processors Running the Load Code

Load Code None 1 2 3
V=V+§ 12.0 IL.S 11.0 10.5
V=V+S§S*V 12.0 11.5 11.0 10.5

Tabie 4b. Performance of V=V + § * V in MFLOPS urder Various Loads
Number of Processors Running the Load Code

Load Code None 1 2 3
V=V+S§ 15.0 15.0 15.0 14.0
V=V+S*V 15.0 15.0 15.0 15.0

/]
Table 4c. Performance of V = V + S in MFLOPS under a Strided Load

Number of Processors Running the Load Code

Load Code None 1 2 3
_ V=V4+S(stride8) 12.0 5.5 3.2 2.8

Table 4d. Performance of V=V + § * V in MFLOPS under a Strided Load
Number of Processors Running the Load Code
Load Code None 1 2 3

V =V + 8 (stride 8) 15.0 7.3 4.6 3.6

—_— ——— ——— ——
Table 4e. Execution Time for HYDRO (seconds) while Running HYDRQO as Load

Number of Processors Runnin,, the Load Code
Lead Code None 1 2 3
HYDRGO 74.6 79.5 85.9 92.6

For these operations the "load” codces, the codes running in the processors besides the one on which the probe is
running, are also simple vector operations: either V=V +Satstridc I, V=V +S*Vatstridcl,orV=V +
S at stride 8, again all ar vector length 1000.

The data show that no uppreciable degradation in rate occurs for either probe operation when the load operation
accesses memory ceitiguously. This is not what was observed on the CRAY X-MP/416, where, for cxample,
four copies of SAXPY ran at about 70% efficiency.!5 We believe the C-240 shows less degradation than the X-
MP for the following reason: The memory bottleneck occurs at the processor level, not at the bank level,
beeausce there is only a single port to memory. That is, there can be at most four memory references requesting a
bank on the C-240, while there can be at most twelve on the X-MP. However, because of bank conflicts
associated with stride-8 references, both SAXPY and V = V + S probes show enormous degradations on the C-
240 when th= load codes use stride 8.

Because both the probes and loads in these tests are small, tight loops that constan:ly access memory in a very
rcgular pattern, they are probably worst-case estimates of multi-CPU memory contention cffects.

We also measured the times for a full application benchmark when scveral copics of the same benchmark were
running. As shown in Table 4e, HY DRO runs at about 80% cfficicncy under a four-processor load (cfficicncy =
time with no load / time with multiple copics). On the X-MP/416, the HYDRO cfficicncy under full load is
still abuut 949,16

5. Softwore

We would like to make special mention of a software tool we uscd brizfly while at Convex. The tool is SPY
and it was written by Ron Gray of Convex, although it is not officially rclcascd as a Convex product. SPY is a
runtime profiling tool that instruments the code 10 be profiled at compi'e time. Following cxecution, SPY
produces a listing that contains, among other things, vector loop lengths (at the code level, not the hardwarc

level), MFLOP rates for each loop, counts for various kinds of instructions, and register-spill information. Wc¢
are not aware of any products at Los Alamos National Laboratory that provide this information at the loop level.
Most interestingly, SPY also works for codes that run in vector concurrent mode, in which case it lists the
distribution of logical CPU thread times, showing both wallclock and CPU times. Again, this information is
given at the loop level. While we did not have enough time to really make use of SPY to improve our
benchmark times, we feel that it would be a welcome tool to any of our existing optimization workbenches. The
use of SPY is described tnore completely in Reference 8.

6. Summary

We found that on our HYDRO benchmark, a code that is representative of a large class of codes in use at the
Laboratory, a single C-240 processor ran at about one-third the speed of the CRAY X-MP/14 processor. This
suggests that, because the C-240 is a four-processor machine, the C-240 system is about equivalent in
throughput power to the CRAY X-MP/14 system. This conclusion takes into account the degradation in
runtime we observed while timesharing four HY DRO runs on the four-processor Convex. Of course, the actual
“time-to-solution” is the critical factor in many situations, in which case the X-MP/14 has a significant
advantage. Also, note that we have chosen the X-MP/14 for comparison because it was thc only UNICOS Cray
at Los Alamos National Laboratory at the time this study was carried out. However, the X-MP/14 is a member
of an older generation of Cray machines; it does not, for example, possess scatter/gather hardware (while the
Convex C-240 does). HYDRO runs about 35% faster on a 9.5-ns CRAY X-MP with scatter/gather (under
CTSS).

Convex has taken an evolutionary path in the design of its second-generation machine. There was much morc of
an architectural difference between the CRAY-1 and CRAY X-MP, for example. However, the difference in clock
speed between the C-1 and C-240 is much greater than the clock-speed difference between the CRAY-1 and
CRAY X-MP. This, of course, is because Crays push the limits of chip and packaging technology and, in doing
so, are more limited in the advances they can make in processor speed in any one generation. There is less room
to maneuver between four nanoseconds and, say, one nanosecond than there is between forty nanoseconds and onc
nanosecond. This suggests the minisupercomputers as a group will, for the foreseeable future, continue to make
strong gains in clock speed relative to supercomputers.

Acknowledgments

We are grateful to Ron Gray of Convex who has gone well beyond the call of duty in helping us with our
benchmarks. Thanks also to George VanDegrift for arranging our Richardson visit.

References

[1] H.J. Wasserman, M. L. Simmons, and O. M. Lubeck, "The Performance of Minisupercomputers: Alliant
FX/8, Convex C-1, and SCS-40," Parallel Comput. 8 (1988) 285-294.

[2) H.J. Wasserman, "Los Alamos National Laboratory Computer Benchmarking 1988," Los Alamos National
Laboratory report LA-11465-MS (December 1988).

{3] M. L. Simmons and H. J. Wasserman, "Los Alamos National Laboratory Computer Benchmarking 1986,"
Los Alamos National Laboratory report LA-10898-MS (December 1987).

[4] J. H. Griffin and M. L. Simmons, "Los Alamos National Laboratory Computer Benchmarking 1983," Los
Alamos National Laboratory report LA-10151-MS (June 1984).

{S] J. L Martin, "Los Alamos National Laboratory Computer Benchmarking 1982," Los Alamos National
Laboratory report LA-9698-MS (June 1983).

[6] J. L. Manin and R. G. Martinez, "Los Alamos National Laboratory Computer Benchmarking 1981," Los
Alamos National Laboratory report LA-9104-MS (Novernber 1981).

[7] 1. Y. Bucher and A. H. Hayes, "Los Alamos National Laboratory Computer Benchmarking 1979," Los
Alamos National Laboratory report LA-8689-MS (February 1981).

[8) R. Gray, "Parallelization of a Subsct of the Los Alamos Benchmark Suite on the Convex C-240 and
Performance Comparisons to the CRAY Series of Computers,” Convex Computer Corp., available from
the author.

[9] M. Chastain, G. Gostin, J. Mankovich, and S. Wallach, "The Convex C240 Architecture,” Proc.
Supercomputing ‘88, IEEE Computcr Society, 1988, pp. 321-329.

[10] H.J. Wasserman, "Performance of CFT and CFT77 Compilers,” Los Alamos National Laboratory internal
memorandum BM-89-1206 (Deceniber 1989).

{11} R.J. Koskela and H. J. Wasserman, "Benchmark of the Multiflow Trace-300/14," Los Alamos National
Laboratory intemal memorandum BM-89-1219 (December 1989).

{12] O. Lubeck, J. Moore, and R. Mendez, "A Benchmark Comparison of Three Supcrcomputers: Fujitsu VP-
200, Hitachi S810/20, and Cray X-MP/2," IEEE Computer Magazine 12 (1985) 10-24,

(13] M. L. Simmons and H. J. Wasserman, "Performance Comparison of the CRAY-2 and CRAY X-MP/416
Supercomputers,” Proc. Supercomputing ‘88, IEEE Computer Socicty, 1988, pp. 288-295.

[14] H. J. Wasserman and M. L. Simmons, "Benchmark of the CRAY Y-MP/832 SN 1002," Los Alamos
National Laboratory internal memorandum C-3-HJW-1 (August 15, 1988).

[15] G. J. Faanes and J. L Schwarzmeier, "Comparing the Performance of CRAY Y-MP and CRAY X-MP
Computer Systems,” Cray Channels 10 (1989) 26-30.

10

